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Finite State Induced Flow Models
Part II: Three-Dimensional Rotor Disk

David A. Peters*

Washington University, St. Louis, Missouri 63130

Cheng Jian He?

and

Advanced Rotorcraft Technology, Mountain View, California 94043

In Part I of this two-part article, we developed a finite state induced flow model for a two-dimensional airfoil.

In this second part, we develop a finite state induced flow model for the three-dimensional induced flow for a
rotor. The coefficients of this model are found in a compact closed form. Although the model does not presuppose
anything about the source of lift on the rotating blades, applications are given in which the Prandtl assumption
is invoked. That is, the two-dimensional lift equations are used at each radial station, but with the inflow from
the three-dimensional model. The results are shown to reduce (in several special cases) to Prandtl-Goldstein
theory, Theodersen theory, Loewy theory, dynamic inflow, and blade-element momentum theory. Comparisons
with vortex-filament models and with experimental data in hover and forward flight also show excellent cor-
relation.
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Nomenclature

induced inflow expansion coefficients
nondimensional semichord, ¢/2

locally normalized semichord, b/F
arbitrary coefficients of pressure function
blade chord nondimensionalized on R
induced inflow coefficients in terms of
P:(v) expansion

inflow acceleration operator

factorial combination, defined in Eq. (43)
Bessel function of first kind of order n
polynomial number )
reduced frequency, for rotor blade, @b/F
mb/r

quasisteady inflow operator

cosine and sine part of L operator
circulatory lift of gth blade, dimensionless
on pQ)°R*

cosine and sine part of induced inflow
influence coefficients associated with
radial expansion P/(v)

cosine and sine part of induced inflow
influence coefficients associated with
radial expansion ¢/

total nondimensional lift

total number of harmonics

apparent mass matrix

harmonic number

double factorial of n,

(n)(n — 2)(n — 4) --- (2), for n even;
(ny(n — 2)(n — 4)--- (1), for n odd
pressure across disk, dimensionless on
pQ*R*

associated Legendre functions of first
kind
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normalized Legendre functions,

Pr(v) = (= 1)y"Pr(w)ipy

number of blades

associated Legendre functions of second
kind

normalized Legendre functions,

O:(im) = O;1(in)/ O (i0)

blade index

ith component of perturbation velocity,
dimensionless on QR

rotor radius, m

blade radial coordinate
nondimensionalized on R

total number of inflow states
nondimensional time, Qf

inplane velocity relative to airfoil,
dimensionless on QR

flow parameter, dimensionless on QR
freestream speed, dimensionless on (R
mass flow elements, Eq. (66)

total flow at rotor plane, dimensionless
on QR

normal component of induced inflow,
positive downward, dimensionless on (R
Glauert coefficients of flow normal to
airfoil, dimensionless on QR

function of wake skew angle, tan|y/2]
rotor disk coordinates,
nondimensionalized on R

wind coordinates, nondimensionalized
on R

chordwise coordinate centered at
midchord, dimensionless on R

double factorial of 0, defined as equal
to 1

angle between freestream and rotor disk,
positive nose down

effective disk angle of attack,

tan '(A/u)

induced inflow coefficients in terms of
¢/(7) expansion

induced inflow coefficients in terms of
¢/ (F) expansion
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steady value of &Y
= total inflow, A, + A,
freestream inflow, V., sin(«)
mean inflow in momentum expression
steady part of A,
Glauert coefficients of induced fiow
advance ratio, V., cos(a)
ellipsoidal coordinates, dimensionless
= coordinate along freestream line, positive
upstream
P = air density, kg/m*
(p)? = integral (0 to 1) of [P”(»)], Eq. (14)
T T = cosine and sine part of pressure expansion
coefficients, corresponding to o/ and B/
pair
T, Fm = cosine and sine part of pressure expansion
coefficients, corresponding to &/ and 3/
pair
d = pressure function, dimensionless on
pR>
®i(F) = radial expansion shape function
$1(P) = (Un)P/(»)
(7) = ¢/(F)V7/(4H )
= wake skew angle, 7#/2 — «,
(7) = general expansion functions
= azimuthal location of reference blade
= azimuth of gth blade,
I+ QCa/O)g —1)
Q = rotor rotational speed, rad/s
@ = oscillation frequency, nondimensionalized
on {}
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Superscript
= derivative with respect to nondimensional
time, a/af

Introduction

Background

LTHOUGH there are a great number of research tools

that have increased our understanding of unsteady rotor
aerodynamics, there are only a very few unsteady aerody-
namic theories that can be applied to realistic problems of
rotor dynamics and aeroelasticity. For lift and induced flow
theories to be viable in an aeroelastic analysis, the algorithms
that describe the inflow must be representable in terms of a
limited number of explicit state variables. The use of explicit
states is needed so that we may obtain perturbation equations
in order to do Floquet theory and do control system design.
Historic wake models, however, are usually not in state
variable form. The most well-known methods would certainly
be prescribed-wake lifting-line theories,' and lifting surface
theories,” as well as free-wake lifting-line theories.? However,
when we come to the question of performing an aeroelastic
analysis of a realistic rotor, we find that such vortex-filament
theories are not presently a viable alternative. First of all, for
any problem beyond rigid-blade flapping, the computational
effort of tracking the unsteady vorticity and of computing
induced-flow integrals over hundreds of filaments at every
time step is simply too large to handle on a routine basis.
Second, these vortex theories are restricted to time-marching
problems. They are not in a format that would allow eigen-
value analysis. Even Floquet solutions, which entail time-
marching over one period for each state-variable pertur-
bation, cannot be applied (either because the states of the
flowfield are not defined explicitly or because there are too
many states for realistic Floquet analysis). One can impose
restrictions that allow a closed-form version of vortex theo-
ries. Such restrictions include a cylindrical wake and an in-
finite number of blades. Several authors have developed such
theories.* but the assumption of an infinite number of blades

restricts the results to only the first or second harmonic of
time-averaged induced flow.

Acceleration potential theory offers an alternative tool for
our understanding of rotorcraft aecrodynamics. In the accel-
eration potential approach, one takes advantage of the fact
that there is no pressure discontinuity off the lifting surface.
Thus, it is possible to determine the induced flowfield with
less computational effort. Also, since the acceleration poten-
tial is directly related to the blade pressure, it facilitates the
formulation of the unsteady rotor wake in a form favorable
to blade aeroelasticity modeling. The key ingredient in this
approach is to obtain the perturbation velocity field as a func-
tion of the pressure on the blade.

It is probable that Mangler’” was the first to apply accel-
eration potential theory to the computation of rotor induced
flow. In his approach, the rotor is assumed to be an actuator
disc with a pressure discontinuity across it. The rotor loading
distribution is expanded in a series of Legendre functions that
are components of the general solution to the governing equa-
tions of the acceleration potential associated with the rotor
disc. The time-averaged induced velocity due to three types
of axial-symmetric loading is obtained. Van Holten® proposed
a method for calculating unsteady three-dimensional incom-
pressible airloads on a helicopter rotor blade in steady forward
flight. The method uses the acceleration potential formula-
tion, together with a matched asymptotic expansion tech-
nique. Runyan and Tai’ also used an acceleration potential
approach to compute unsteady compressible flow around a
helicopter rotor in forward flight. They modeled the lifting
surface and solved the resulting integral equation by a doublet
lattice approximation. All of these studies are classical fun-
damental formulations of unsteady aerodynamics. Thus, they
do not yield explicit wake dynamics appropriate for eigen-
value analysis of the rotor system. (There are hidden states
in these formulations.) Moreover, such formulations preclude
efficient iterative system design due to their computational
intensity.

Present Approach

As outlined in the previous review, although many methods
exist for study of the unsteady wake of lifting rotors, each of
these has certain drawbacks when one attemps to apply them
to the analysis of rotor aeroelasticity. Somewhere between
the simplest momentum and the most complicated free-wake
methodologies should be an intermediate-level wake model
applicable for problems of aeroelastic stability (frequency,
damping, and modal information), for basic blade-passage
vibrations (in the absence of signficant blade-vortex interac-
tion), for higher-harmonic control studies, and for problems
of tilt-rotor or stop-wing transitional dynamics.

Recently, the authors have developed a finite state un-
steady induced-flow theory appropriate to rotorcraft aeroe-
lasticity studies in both hover and forward flight.!® Since
then, other papers have appeared that provide closed-form
expressions for the theory coefficients,!' that extend the
theory to nonlinearities associated with hover,'? that cor-
relate inflow with measurements,'>'* and that correlate ro-
tor eigenvalues with measurements. ' Thus, since the theory
has significantly evolved since 1989, and since much of the
documentation is not in archival publications, the purpose
of this article is to 1) document in one publication the the-
oretical basis of the work, 2) summarize the sundry vali-
dation efforts that are now completed, and 3) detail the
theoretical and numerical applications (and limitations) of
this finite state inflow theory.

Formulation

Fluid Mechanics

The basic fluid mechanics equations for an incompressible
potential flow with small perturbations can be written non-
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dimensionally in index notation as
g, =0 1)
4 — Vigie = — @, 2

The first equation is for conservation of mass (i.e., the con-
tinuity equation), and the second is the three components of
force-momentum balance. In these equations, the g, are the
perturbation velocity components, @ is the pressure, ( )* is
a nondimensional time derivative, ( ), is the derivative along
the freestream line, and a repeated index implies summation.
Here, we take the streamline ¢ at an angle y from the normal
to the rotor disk.

As observed from Eq. (2), the spatial variation of the pres-
sure is the superposition of contributions from both the gra-
dient of velocity along the freestream direction (convection)
and the local unsteadiness of the flowfield. This suggests a
division of the pressure into two parts (i.e., the part due to
convection, denoted as ®Y, and the part due to unsteadiness
denoted as ®*). Then, the pressure can be expressed as

D = PY + P4 (3)
or
¢, = @7 + @ “4)
where
QY= V.qie )
L= g, (6)

If we differentiate Eq. (2) with respect to the index {, with
the help of continuity Eq. (1), a Laplace’s equation for the
pressure function can be obtained as follows:

¢, =0 (7)

In a similar way, from Eqgs. (4) and (5), we have
®5 =0 )
&1 =0 )

Equations (8) and (9) indicate that each part of the total
pressure satisfies Laplace’s equation, which is significant for
the formulation of the theory. The boundary conditions for
each ® component are that the pressure matches the known
blade loading on the rotor blades (which are assumed to al-
ways lie on a circular disk), and to be zero at infinity (the
condition of zero perturbation pressure at infinity is not ex-
actly true inside of the rotor wake, but this is neglected in
this theory).

When written in ellipsoidal coordinates (see the Appendix,
Fig. A1), Laplace’s Eq. (7) associated with a circular disk can
be solved analytically by the method of separation of varia-
bles. The potential functions thus obtained give an arbitrary
pressure discontinuity across the disk due to the equivalent
of acceleration doublets. Application of the zero-pressure per-
turbation condition at infinity yields a suitable general solu-
tion for the acceleration potential

3

T ED D

m=0 n=m+1lm+3....

Pr(v)Q(in)

x [Cr(Fycos(mip) + Dr(D)sin(mip)] (10)

where P7'(v) and Q!(in) are associated Legendre functions

n

of the first and second kind, respectively; C?" and D' are

arbitrary coefficients to be determined; and », n, and
are ellipsoidal coordinates as described in Appendix A. In
the summation [Eq. (10)], only those terms with n + m odd
are retained, because P;*(v) with n + m even do not match
the boundary condition of zero pressure at the edge of
the disk. Terms of the type P(iv) and Q(n) are rejected be-
cause they do not give zero pressure at infinity. Also, in Eq.
(10), the Legendre function PZ(v) is defined only for
n=m.

Equation (10) is related to the solutions for circular wings
found in the literature.'> "7 However, here we have no non-
penetration boundary condition or Kutta condition. Further-
more, the pressure must be zero at the rotor edge. Thus, the
extra singular potential solutions are not required. Also, the
unsteady solution in Ref. 16 is treated in the frequency domain
(as in Theodorsen theory), whereas here we develop a finite
state solution.

It is important to note that, since v is positive above the
disk and negative below the disk, the pressure function ® with
n + m odd yields a discontinuity in pressure across the disk
where 7 = 0, v = V1 — 7, and § = . Therefore, rotor
lift can be expressed as the pressure difference between the
upper and the lower surfaces of the disk

%

Pru =23 3

m=0 n=m+lan+3....

x [Cr(Fycos(mp) + D7(D)sin(mip)] (11)

n

P(v)07(i0)

or

2 =%

P(F o, 1) = 2 > Pir(w)rye(f)cos(my)

+ T(D)sin(mi)] (12)
where

Pr(v) = (=1)y"[Pr(v)ipy] (13)

0 = 5 et (14)

= (=1 2000 Cry (15)

= (= )r20n 0Dy (16)

The P'(v) are so defined for mathematical conditioning, and
they may be called normalized associated Legendre functions
of the first kind since they result in

1
L (PP dv =1, Pp.(»>0 (17)

It is also helpful to use the normalized variables 7/, and 7/
in the global pressure

B

] &
q>:—52

m=0n=m+1im+3... .

Pr(v)Qri(im)
X [rpe(f)cos(my) + r(F)sin(mip)] (18)

where we have introduced

Qn(im) = [Qr(in)/Q(i0)] (19
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Since both ®Y and ®~ satisfy Laplace’s equation, Eq. (18)
can be utilized to represent each of them:

1 & i _ _
V= -2 > > Py(v)Q7(im)

2 m=0 n=m+1om+3....
x [(rp)eos(mip) + (i) Ysin(mip)] (20)
] < o _ ..
L P O A GO )
m=0 n=m+1m+3, ...
X [(7pyt cos(mi) + (772) sin(mip)] 21)

To establish a relation between the induced flow of a lifting
rotor and the blade loads, let us start with Egs. (5) and (6).
Integration of Eq. (5) along the freestream direction results
in a relationship between velocity and &V

__Lf”" v
a =~y | o @2)

where the « cannot be inside the rotor wake due to the bound-
ary condition ¢,() = 0. A relationship between velocity and
®“ can be obtained from Eq. (6):

a= -4 (23)

Now, if we are only interested in the z component of the
perturbation velocity at £ = 0 (i.e., the normal component
of induced inflow at the rotor disk), Eqgs. (22) and (23) can
be placed in the following forms:

1 f“ adv
W=y o d¢ (24)
b
=L (25)
0z _
n=0

Equations (24) and (25) can be thought of as linear oper-
ations on @ to obtain w:

w = L[®Y] (26)

w

Il

E[D"] (27)

At this stage, we assume that the operators L and E are
invertible. Then, we can write a time-domain induced-flow
theory based on Eq. (3) in the following form:

E-[w]* + L'[w] = @4 + &V = & (28)

Therefore, if we can find these inverse operators, then we
can formulate the induced-flow theory for rotors. As will be
seen immediately, with a proper series expansion for induced
flow, both operators L and E can be expressed in a matrix
form, and thus, can be inverted by methods of linear algebra.

The induced flow distribution can be represented in an
analogous expansion to that used for pressure in terms of a
harmonic variation in azimuth and arbitrary radial distribution
functions ¥,

wr )=

r=0j=rtbr+3,...

+ bi(r)sin(ry)] (29)

Wi(P)aj(D)cos(ri)

where the set of radial expansion functions, the ¥ /(7), must
be linearly independent and complete (within the constraints
at 7 = 0) for a given harmonic r. The a/, and b; are induced
flow expansion coefficients and can be regarded as the time-
dependent states of the induced-flow model. One obvious

choice for W/(7) is the set of normalized Legendre functions
used in the pressure representation

%

wE =Y

r=O j=r Lt 300

+ di(f)sin(ry)] (30)

Pi(w)[cj(Peos(rp)

where the ¢; and d; are induced flow states related to the
P/(v) expansion. However, this choice does have the disad-
vantage that

P/"‘(f)|f;1 = P;(V)L':u =0 (31)
which could imply slow convergence of velocity near the blade

tip. Therefore, we consider an alternate choice to overcome
this barrier:

Wi(F) = ¢;(F) = (1/v)P)(v) (32)
then
wmmazé_wgh¢wmmmwm
+ By(D)sin(r)] (33)

The radial expansion functions ¢/(7) have the following form:

40 = VO OH, 3
(=192 + g
(g~ nig + NG — g ~ D

o

(34)

where

,_ G +r—=DiG - r -t
M= G G = o

Interestingly enough, the ¢i(7) = (1/¥)P{(v) are simply poly-
nomials in the radial position 7, having only even (or odd)
powers ranging from (F) to (F)y~' (j + ris odd, and j > r).
With pressure and velocity each represented by the above
expansions with like number of terms, the operators in Eq.
(28) can be expressed as square matrices that relate the pres-
sure coefficients (7, 7) to the velocity coefficients (o,
B7). Thus, Eq. (28), mulitiplied by a factor of 2, becomes

[m{@%Awm'%@} %&% 6
[M{@%-ﬂm‘%@} %&% ()

where [M] represents the inverse of the E operator; and [L¢],
[L*] are the L operators for cosine and sine components,
respectively.

(35)

Matrix Operators

The first term in each of Egs. (36) and (37) is related to
the unsteadiness of pressure. It comes from the E operator
that is associated with the acceleration part of the induced
flow. Thus, it can well be called an apparent mass matrix. Tt
turns out that the simplest form of this mass-matrix operator
relates to the ¢ (F) expansion, Eq. (33). The computation of
the M matrix involves implementation of the operation in Eq.
(25). First of all, according to the transformation from the
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rotor disk coordinates to ellipsoidal coordinates, as described
in the Appendix, application of the chain rule yields

d 1 d J

— = - 1-v)—+ vl +7n°)— 38

- an[n( v) o+ o n)an] (38)
At the rotor disk, 7 = 0, this equation reduces to a simple
form:

10
- == 3
) om (39)

vl

Substitution of Egs. (21), (33), and (39) into Eq. (25), and
with the help of orthogonality of both associated Legendre
functions of the first kind and trigonometric functions, we
obtain

dp = ]y (40)

dn w02

. m(ln) 1 !
wo= > ()t (41)
B d17 we0 2
where

m(m) T
—_ — (Hm) 1 (42
dn weo 2 )

_(ntm-—Dln —m - nHn

H: (n + m)lt(n — m)!!

(43)

Therefore, the [M] matrix is a diagonal made up of terms
(4H m/ar). For application, it is advantageous to have [M]

= |. Therefore, we take the w expansion in Eq. (33) to be
in terms of polynomials normalized on 2\ H [/

b = VA + D)
il ” ( 1)((1 r)/°(j + q)|
x ) 2, (¢ — N(g + NI(j — ¢ — DU (44)
Thus,
w(7, o, ) = Z(, -:,ﬂi; HG)
x [@i(F)cos(r) + Bi(F)sin(ry)] (45)

Then, we divide each row in Eqs. (36) and (37) by 2V H/mr
to give [M] = I for both sine and cosine equations.

The [L] matrix (or operator) takes on two different forms:
one for cosine {L¢], and one for sine [L*]. To compute this
matrix, it is most convenient to use the P*(v) expansion, Eq.
(30). We substitute Eqgs. (20) and (30) into Eq. (24), multiply
by P/(v,)cos(rip) or P;(v,)sin(ry), where v, and ¢ are the v
and ¢ on the disk from which the streamline emanates; and
we integrate both radially and azimuthally. By taking advan-
tage of the orthogonality, of both associated Legendre func-
tions P;*(v) in the interval [0, 1] and of trigonometric functions
n [0, 27], we obtain linear relations between inflow states
and pressure of the form

{{a}}}=i[-~ [L;:,"] : H{(T"“)V}} (46)
{{B}}:VL[ it ] {{()}} @)

<

The elements of L are computed from the following expres-
sions:

Ome po
Ly =7 powy [ 2

[P0 02 (im)]

x cos(rmiy) d¢ dw, dis (48)
Ly == [ ] Brtweosew) || 2 1Pr0 i)

XaMm@d&Mﬁw (49)
Ly == |7 [ Brosingw) || 2 (Pre)0stin

X sin(ngr) dé dv, dy (50)

where ¢ emanates at an angle of x away from the z axis.

The circumflex indicates that L is for the special case of
the P7(v) expansion with V. factored out. The L is parti-
tioned such that the superscripts are row-column indices of
the r-m partition, and the subscripts (J, ») are the row-column
indices of the elements within each partition. We must note,
however, that these indices do not take the traditional matrix
values of 1, 2, 3, . . . . Instead, for the cosine equation, we
havem = 0,1,2,3,... ,andr =0,1,2,3,...;for the
sine equation, m = 1,2,3,...,andr = 1,2,3,...;and,
for eitherset,j = r + 1,r + 3, r+5,...0orn =m + 1,
m+ 3, m + 5, . Interestingly, for ax1al flow, x = 0,
(&= ~z) L reduces to the identity matrix for both sine and
cosine, as will be shown later.

Although, the integrals in Egs. (48), (49), and (50) may
seem hopelessly complex, they have been worked out in closed
form, and the formulas have been verified through compar-
isons with numerical evaluation of the integrals. The elements
of L depend only on the wake skew angle x (x = 0 in axial
flow, ¥ = 90 deg in edgewise flow)."® After we transform to
a qS series (&, B;), and divide each equation by VH? 7,
L becomes L:

(LT = xirgy) )
Lyl = Dxver 4 (-] (52)
(Ll =[xt — (= 1) X[ (53)
where / = min(r, m), and X = tan|x/2|. Note that 0 =<
X=1.

All sine and cosine elements rely on the same coefficients
I’/ that can be expressed in closed-form as follows:

for r + m even

; (= 1Yo+ i=224\/2n D) + 1)
e s v T R R

forr + modd,j =n = 1

Sgn -
= 2 ) (55)
VQ2r+ D2+ 1)
forr + modd,j #n = 1
L =0 (56)

This is the most compact form of the theory.

As a further refinement of the perburbation theory, the V.,
in Eqgs. (46) and (47) can be replaced with an equivalent V
to account for the influence of induced flow on the total steady



328 PETERS AND HE: THREE-DIMENSIONAL ROTOR DISK

flow through the rotor disk. A complete derivation is given
in Ref. 19. The resultant V' is

V= [+ A+ ANV p? + A7 (57
m T A (58)

The A, is the momentum-theory value of steady induced flow
for a trimmed rotor

Ko = HCIVy) = (V3m2)iy (59)

where Cy is steady thrust, &) is the steady uniform induced
flow, and V,- = V> + A Our wake model can then be
considered as a theory for perturbation pressure and velocity
about this steady condition. In axial flight (u = 0), the mass-
flow parameter reduces to

V=2Ax+A4,

' (60)
= A + 24

m

which is the same as momentum theory.

Furthermore, in application of the wake theory, «, should
be taken as y = (#/2) — «,.. This modification accounts for
the influence of inflow perturbation on global wake skewing
in an averaged manner, and cannot be ignored. Thus, we use

= tan '|A/u] (61)
X = tan—' Al (62)

The above extends the theory from one linearized about
freestream V_, to one linearized about the momentum theory
value of &{. This is accurate because the first element of the
L matrix LYY, is independent of wake skew angle. As a final
generalization, the theory can be integrated to obtain one that
is nonlinear in &, although linear in all other @, 8. Ref-
erence 19 shows that this is very accurate in hover. (The
nonlinearity has little effect on forward flight for which V is
dominated by w.) The resultant nonlinear equations are

{&'x'} 2 R {&'cr} {r} (63)
{B‘::'} YA R {B'::’} = {r} (64)

Il

where A, is replaced by A,, in V, and V- and
VY=V, (65)
V=V for n,m+ 1,0 (66)
with
A = (V37/2)a8 (67)

which is in terms of the instantaneous value of &|. Thus,
nonlinearities of the form aYa; appear in the equations.
Reference 18 shows that a perturbation of Eqgs. (63) and (64)
recovers the original equations if the wake skew angle is fixed
and if the static solution has uniform inflow a¥.

Limitations

[t should be pointed out that there are several crucial lim-
itations to the above approach. First, the rotor is assumed to
consist of acceleration doublets that remain in a thin, unde-
formed disk. Thus, effects of dihedral or blade out-of-plane
bending on the wake are not included. Second, all loads are

considered to be normal to this disk. Thus, induced flow due
to inplane lift is not considered. Third, this model implies a
skewed, cylindrical wake. Thus, effects of wake distortion and
roll-up are neglected. Fourth, the singular potential functions
are not included. Thus, the theory cannot converge to a cir-
cular wing nor compute lift due to radial flow along a blade
(although it does converge to an actuator disk with zero pres-
sure at the edges). Therefore, one should not infer that this
model can replace vortex-lattice models for all applications.
Its primary utility is that it provides a state-space model that
can be used in aeroelasticity and control applications.

Application

Generalized Forces

The pressure coefficients 7 and 7. in Eqs. (36) and (37)
serve as the inflow generalized forces, or the inflow forcing
functions, and offer the interface between the wake and lift
models. In order to be coupled with blade lift theory, the
7 and 77* need to be appropriately related to the blade
circulatory lift. To do this, we assume a rotor with a finite
number of blades so that the rotor disk loading is discontin-
uously distributed at the instantaneous position of each rotor
blade. This is to say that the air loading is finite only on the
blade planform, and zero elsewhere. Suppose that the lift is
available at every instant time 7. We then would have the
pressure on the gth blade written as P, (7, ¥, f), where y,
is defined from —b to +b across the blade chord for which
¢ = ¢, + sin”!'(y/F); and pressure is zero elsewhere. Then,
we can expand this discontinuous distribution in terms of
Legendre functions:

E3 e

P o B) = X >

m=0n=m+1lm+3.. ..
+ i (D)sin(mip)] (68)

Accordingly, the 7/ and 7! can be obtained as

Pr(v)[rre(D)cos(mis)

w=2 S perewas @)

T = —

7T<,|

J J P (7, y, Dm(F)cos(my) dF dy  (70)

T = ;1, IJ J P (7, ¥, Dr(Psin(mi) dF dy  (71)
where y is nondimensional chordwise coordinate with its or-
igin at midchord, and # is azimuth angle as in Fig. 1. It is
also noted that dv dy has been expressed in terms of d7 dy
on each blade (at ¢,), and ¢;7 = (1/w)P;'(v) is used. If a

Y x

Fig. 1 Evaluation of inflow forcing functions.
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particular blade theory does not provide chordwise pressure,
we may assume a chordwise distribution P,(y), such that

P75, 1) = L7 DP,(7) / [ rma @

After substitution of Eq. (72) into Egs. (69—71), we can per-
form the chordwise integral for the 7" equations.

From the above results, the final 7, equations, for small
b/7, can be written in a concise complex form

qne = %(,Tm( - l',Tms

n”
27T [J fm q ;1(,‘;) df:| e ~imig
g=1

where the function f,, represents the integral of chordwise
pressure distribution, and is given by

(73)

3

i Py()})e( ImyiF) dy

—-b

[ roo

f..(mbl7y = (74

For the ¢; expansion of the induced flow, Egs. (63) and
(64), the correspondmg 7 integrals are

T = —5( me ms)

1 Q
. J me‘,d)'”(r) di | e
7T

The functions fm, which appear in the 7" equations, can
be found for any given chordwise pressure distribution. From
Eq. (74), it is noted that f,, is only a function of mb/F(=k,,).
Figure 2 shows six different chordwise distributions and re-
sultant values of f,,. The first three are for distributions cen-
tered about the midchord. These give f,, = 1 for a lifting line,
f,. = sin(k,,)/k,, for a uniform pressure, and f,, = Jy(k,,) for
the Glauert distribution. The last three are for distributions
with c.p. at the quarterchord. These give complex values (i.e.,

717 depends on a sin(my,) integral, and vice versa). For (k,,,)2
<< 1, the first two f,, are approximately 1, and the last three
are approximately 1 — ik, /2. All five are equal to 1 for the
zero harmonic.

Strictly speaking, a theory with f,, = 1 for all harmonics (a
lifting line at the point of velocity computation) does not
converge on velocity at y = 0 as the number of harmonics
increases without bound. (This is to be expected, since it is
well-known that unsteady lifting-line theory has a singular
integral and an infinite imaginary part of the lift-deficiency
function.) Nevertheless, for realistic helicopter parameters
and m < 30, we find that f,, = 1 is numerically accurate. (It
is well-known that some series can be very useful and accurate
with a few terms, although they diverge with an infinite num-
ber of terms.>) Therefore, one may reasonably take f,, = 1
with little loss of accuracy. On the other hand, if one wishes
to include more than 30 harmonics, the choice f,, = sin(k,,)/
k,, or f, = Jy(k,) converges well and effectively filters out
the effect of bound vorticity from the computation.

(75)

Lift Theory

For the lift L, in Eq. (75), one could apply any theory that
provides circulatory lift based on the time history of induced
flow. For example, Refs. 11 and 21 utilize the ONERA dy-
namic stall theory. In this article, we invoke the Prandtl
assumption that the sectional lift can be found from a two-
dimensional analysis of the nonpenetration boundary condi-
tion, but with the induced flow in that condition coming from
the three-dimensional wake model. Thus, we use the lift equa-

DISTRIBUTION P, P
5 () 1
b 0 +b
! | U@+ sin(mb)
l | u-b) mb
—_
-b 0 +b
I |
| i
I % 1 \
I | — J, (mb)
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| |
I
a) -b 0 +b
DISTRIBUTION P, £
§(7 +2 b
(Y+3) cos (mb/2)
-isin (m6/2)
-b o] +b
| | u(y+b) sin (mb)/(mb)
| | U -i[1-cos (mb)]/(mb)
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:' b+y -, (mb)
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Fig. 2 Chordwise pressure distributions: a) centered about the mid-
chord and b) c.p. at the quarterchord.

tions from Part I of this article. Here, we have renormalized
the results on blade radius and tip speed (as opposed to semi-
chord and local freestream, as in Part I). The resultant equa-
tions are

L, = 2mbu,(w, + tw, — A)) + 7h2(W, — 4,)  (76)
[‘q = ZWBM()(WH + %Wl - /\() - %)\]) (77)

where airfoil motions and iduced flow are normalized on QR.
The Glauert coefficients of inflow A, can be obtained from
integration of the induced flow across the blade chord. The
result is

ES

Z r)J(,(rb) @) cos(rip,) + B sin(rip, )] (78)

.

E b1, (rb) [@; sin(ry,) —

rj

B; cos(ris)]  (79)

As with the 7" integrals, most rotors are slender enough that
we may take J,(rb) = 1, and J,(rb) = 0. The neglect of A,
has little effect for k < 0.2 (typlcal of rotors). Furthermore,
for some pressure distributions, the A, series is divergent or
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has a steady-state error. Thus, it is suggested that A, be ne-
glected in the 7/ integrals.

Although V. can intersect the disc at an arbitrary angle,
the moving blades see a relatively low angle of attack. Thus,
the vorticity in the rotating system is shed exactly at the trail-
ing edge (when the Glauert distribution is applied). In the
nonrotating system, however, the vorticity is seen to propa-
gate at the steeper angle of attack «..

Results

Because the theory has been applied extensively in the
literature, there is little need for a lengthy set of results here.
Instead, we present a few typical results to verify the accuracy
of the theory. First, we take the two-dimensional limit of the
present theory in which we neglect radial functions. Figure 3
shows results of our theory with 12 and 24 harmonics (J =
3, 6), as compared with Lowey theory both with C(k) and
C(k) = 1 (near wake). The results, from Ref. 10, are for the
differential mode. Note in the region 0 < w, < 1.0, k < 0.1,
that the present theory captures the C(k) effects [primarily
k 7.(k)] very accurately. A second comparison is given for the
full three-dimensional theory in axial flow for a one-bladed
rotor (Fig. 4, Ref. 12). The radial distribution of induced
velocity is computed for 16 harmonics and both 1 and 4 shape
functions per harmonic. Comparison with the Prandtl formula
shows a good convergence for the effect of trailed vorticity.
Also from Ref. 12 is a comparison with unsteady flow mea-
surements in hover. Figure 5 shows these comparisons. Note
that, since this is in hover, the full nonlinear version is ex-
ercised. Both the average and blade passage velocities are
well-modeled with 24 harmonics.

Figures 6 and 7, Ref. 13, give computed and measured
induced flow contours in forward flight. The computation has
8 harmonics and 33 total state variables. The correlation be-
tween measured and computed induced flow is excellent, and
Ref. 13 shows the present method to be superior to conven-
tional vortex lattice methods in accuracy. Finally, Fig. 8 shows
results for the lift on a rectangular wing (stopped rotor) of
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Fig. 3 Lift deficiency function, differential mode, V = 0.05, Q0 = 4,
o = 0.061.

aspect ratio 10, taken from Ref. 22. The plain line is the
Prandtl lifting-line solution, and the open symbols are the
finite state model with 8 harmonics (22 states). The agreement
is excellent, and this same agreement is found at all aspect
ratios from S to 30. Thus, the model seems to give good
results, even in the limit of a stopped rotor.

[t is also interesting that the present analysis includes dy-
namic inflow theory explicitly (as the first three states, a9,
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Fig. 6 Theoretical induced flow distribution, tapered blades with
fuselage, u = 0.15, C; = 0.0064, « = 3deg, M = 4, S = 33.
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Fig. 7 Experimental induced flow distribution, tapered blades, u =
0.15, C; = 0.0064, « = 3 deg.
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Fig. 8 Lift distribution for constant-chord wing, AR = 10, solid line
= Prandtl-Glauert, squares = finite state with M = 8.

al, B). A large body of evidence shows that dynamic inflow
is absolutely necessary for rotorcraft dynamic correlation.>* 27

Summary and Conclusions

We have developed an unsteady aerodynamic theory (a
generalized dynamic wake theory), based on a three-dimen-
sional, unsteady acceleration-potential theory. The theory has
the following advantages over conventional unsteady models:

1) The model is general. The rotor can have an arbitrary
lift distribution and a finite number of blades. The rotor disc
can be at any angle to the tlow.

2) The method is extremely flexible in application. The user
may choose the number of harmonics as well as the number
of radial shape functions. Radial or harmonic coupling can
be neglected if necessary, and the theory may be applied
either as a perturbation theory or as a nonlinear theory.

3) The method is easily used with other theories. It may be
applied either in the time domain, frequency domain, or ei-
genvalue domain and may be coupled to any blade-lift model
(including dynamic-stall models, table look-up, and CFD
computations). All that is required is the augmentation of the
user’s equations with additional first-order state equations.

4) The theory recovers other theories. Implicit in this model
are the Theodorsen theory, the Loewy and Miller functions,
the Prandtl/Goldstein theory, and simple dynamic inflow the-
ory.

5) The theory shows good correlation with all data to which
it has thus far been compared. This includes LDV measured
induced-flow data, both time-averaged and time-dependent,
in hover and forward flight.

The limitations of the model are that it converges slowly
and so does not easily capture flow discontinuities. It cannot
provide detailed information close to the blade surface such
as would be necessary for modeling blade-vortex interactions
or acoustical phenomena. It is basically a prescribed-wake
analysis and cannot account for wake roll-up. Thus, its use-
fulness is in the area of rotor aeroelasticity, Q/rev vibration,
and design of higher-harmonic controllers.

Appendix: Ellipsoidal Coordinate System

In the development of the dynamic wake theory, we need
to define the following three coordinate systems.

Rotor Disk Cartesian Coordinate System (x, y, z)

The rotor disk coordinate system (x, y, z) has its origin
located at rotor disk center, x and y axes lay in the disk with
x axis pointing upstream and y axis toward starboard, and z
axis downward as determined by a right-hand rule.

Wind Coordinate System (x,, y,., z,,)

The wind coordinate system (x,,, y,, z,) is obtained by a
rotation of the (x, y, z) coordinates through an angle « about
y (y.) axis. The angle « is the angle between freestream and
rotor disk. The transformation between these two coordinate
systems can be found as

X,, cosa 0 —sinal |x
=] 0 1 0 y (A1)
z,. sinae 0 cosa z

Ellipsoidal Coordinate System (v, 1, )

The ellipsoidal coordinate system (v, 7, ) is defined such
that

x=—V1 - 21 + 5 cos (A2)
y=-V1 - 1+ n’sin ¢ (A3)

z = —uy (A4)

It may be noted that this v, 1, 4 coordinate system will cover

the entire three-dimensional space once and only once, if we
restrict v, i, and ¢ to the ranges

~l=v=+1 (A5)
0=n<w (A6)
0=<q¢<2m (A7)

Figure Al shows the vy coordinate system viewed in the
xz plane. The v = constant surfaces are hyperboloids, and
the 7 = constant surfaces are ellipsoids, both families of
surfaces being azimuthally symmetric about the z axis. ¢ is
the azimuthal angle measured from the negative x axis, coun-
terclockwise looking along the plus z axis. 7 = 0 represents
the two faces of the disc, and » changes sign as one crosses
the disc.

The inverse of the Eqgs. (A2), (A3), and (A4) is

v=—(1"2)sgn(2)V( — s5) + VI — 5)° + 422 (A8)

n = —(z/v) (A9)

Y = tan~1(y/—x) (A10)
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Fig. A1 Ellipsoidal coordinate system.

where
s=x>+ y2 + z2 (A11)

In the ellipsoidal coordinate system defined above, the La-
place’s equation V>® = ( takes the form:

0 L], o 50
Lla-m®)+ Llaem 2|

d|_tm) o
* o {(1 - (1 + %) dlj_/] 0 (A12)

By separation of variables, we have
P(v, m, ) = P, (1)D(N)D3(h) (A13)

Equation (Al12) can be separated into the following three
equations.

2P,
dd@; + m®d; = 0 (A14)
d L. dd, m? _
dy[(l—v) dv}—i_[ 1_uz-i-n(n+1)]<1>,—0
(A15)
d dd, m?
— n—| + - + 1), =
foe ] [z mee o] oo
(A16)

where m and n are the constants of separation. Also, we may
consider m as the harmonic number and #n as the radial mode
number in our dynamic wake analysis. [t is immediately rec-
ognized that Egs. (A15) and (A16) are forms of Legendre’s
associated differential equation.?” The P}'(v) come from one
of the general solutions to Eq. (Al5), and Q(in) from a
solution to Eq. (A16). The other two solutions [i.e., P(in),
Q(v)] are abandoned because they yield an infinite pressure
in the flowfield.
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